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Analysis of complex systems

By G. W. T. WuI1TE AND M. D. S1MMONS
Unwersity Engineering Department, Control and Management Systems Division,
University of Cambridge, Cambridge

It is argued that a complex system of the kind arising in industry is intrinsically struc-
tured: that is to say it may be regarded as an interconnected assembly of subsystems.
By exploiting this structure it is possible to decompose the problem of controlling a
complex system into a series of interlinked subproblems of manageable size. Each
subproblem can be solved largely independently of the others, with the interconnec-
tions between the subproblems being accounted for by some kind of coordination
procedure. Such an approach to complex systems analysis leads naturally to a study of
decentralized and hierarchical control methods and as there is no doubt that industrial
management has a hierarchical structure it is important to assess the usefulness of the
techniques of hierarchical systems theory in the management of complex industrial
systems. In cases where the overall management problem can be posed as a linear or
non-linear programming problem there is a good body of theory to support the
decentralized approach and the basic concepts of this theory are illustrated in this
paper by consideration of decentralized optimization of an interconnected production
system. It is shown that effective optimal coordination of such a system is difficult to
achieve if the subsystems are nonlinear but that satisfactory coordination procedures
may be devised if proper account is taken of the slackness which usually exists in the
interconnections between real systems. The need to assess the usefulness of these ideas
in a real industrial environment is stressed.

1. INTRODUGTION

From an operations research viewpoint, effective management and control of large systems is
difficult because, among other things, the task of formulating adequate models and objectives
is very complex, and because sheer size makes the techniques for using the models and comput-
ing the optimal values of the objectives very slow or even impractical. Nevertheless the rewards
for success are high, and during the last fifteen years considerable effort has been devoted to the
analysis of large-scale problems and to the synthesis of effective techniques for solving these
problems — see, for example, Himmelblau (1973) or the Proceedings of the I.F.A.C. Symposium
on Large Scale Systems Theory and Applications, Udine, Italy (1976). As an area of research
and application this challenging work has attracted the attention of not only the management
scientist but also the control engineer, the applied mathematician and other specialists, and in
the literature on large-scale systems we find contributions from many disciplines. A study of this
literature reveals the underlying belief that the fundamental characteristic of a large, complex
system is that it is not an amorphous aggregate but a purposefully interlinked assembly of units
or subsystems. Likewise, it is the thesis of this paper that complex industrial systems are struc-
tured, and knowledge of this structure should be exploited in the modelling, control and man-
agement of the complex. Any global problem requiring solution for the whole complex should
be broken down into a set of subproblems, one associated with each subsystem; these subprob-
lems are then solved independently of each other but under the influence of a coordinator whose
task it is to account for the interconnections and conflicts between the subsystems. Thus we are
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406 G.W.T.WHITE AND M. D.SIMMONS

concerned with the concepts of decomposition and coordination, of hierarchical control and of
decentralization.

There is a lack of consensus about the precise meaning of the terms ‘decentralized’ and
‘hierarchical’. In the literature, and to some extent in this paper, the two terms are often used
synonymously. Nevertheless it is sometimes desirable to distinguish between the concept of a
decentralized system and that of a hierarchical system, and there is growing support (Sandell,
Varaiya & Athans 1976; Wilson 1977) for the following view. A centralized system is one in
which all the system information is available centrally, and in which all the system variables
may be controlled directly from the centre. Conversely in a decentralized system there is more
than one controller, each of which has knowledge of only strict subsets of the system informa-
tion, and is able to manipulate only strict subsets of the system variables. A decentralized
system is hierarchical only if the information sets of some controllers depend directly on the
action of other controllers, thus establishing a priority of intervention of some controllers over
others. However, a hierarchical system is not decentralized if any controller may operate
directly on all the system variables.

These concepts, and some of the problem solving techniques resulting from them, are
applicable to many aspects of management science including information structures and
decision making (Athans 1974; Ho & Chu 1974; Bailey 1976), scheduling (Drew 1975) and
control (Findeisen 19744). In much of the work in these areas it is explicitly or implicitly
assumed that the problems which arise can be posed as constrained, nonlinear optimization
problems such as the minimization of a cost functional or the maximization of some profit
measure. Admittedly in many practical cases the problem solutions may be sought by methods
other than optimization, but it is believed that the information structures needed to solve the
problems by decentralized hierarchical optimization will be similar to the structures that are
needed for any other decentralized hierarchical solution method. Thus it is the purpose of this
paper to assess the various decomposition and coordination techniques whereby optimization
problems may be solved in a decentralized hierarchical fashion. The optimization problem can
arise in many forms. The variables may be subject to stochastic constraints and the objective
function may be an expectation, or the whole problem may be deterministic. The constraints
may be differential equations and the objective function may be an integral with respect to
time, i.e. the problem may be a dynamic one, or the problem may be static. However, the
various strategies for decomposing an optimization do not necessarily depend upon the type of
problem, and so for the purposes of introducing the basic decomposition and coordination
techniques and delineating the associated structures of information flow, consideration of the
deterministic static problem is sufficient and in this paper attention is restricted to this type of
problem; it is not only the simplest type of problem, and therefore the best suited to illustrate
the methodology, but it is also the type of problem whose solution has the greatest potential for
application.

The layout of the paper is as follows. Section 2 contains a discussion of the motivation for
considering decentralized optimization in an industrial environment, and in §3 a brief review
of the basic theory is given. In §4 the relevance of this theory to real problems is discussed and
emphasis is given to the réle which approximation plays in formulating and solving practical
problems. This leads to consideration in §5 of more recent methods of decentralized optimiza-
tion designed to solve problems which are not rigidly constrained.

A summary of the conclusions is presented in §86.
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ANALYSIS OF COMPLEX SYSTEMS 407

2. MOTIVATION FOR DECOMPOSITION

Before reviewing the theory of some of the basic methods for decomposing nonlinear pro-
gramming problems it is worth while questioning why decomposition should be considered in
the first place. The current generation of computers is very large and fast, and great improve-
ments in nonlinear programming algorithms have taken place. The solution of optimization
problems involving about 100 variables and 100 nonlinear constraints in reasonable time is now
often possible. While this does not stand comparison with the very powerful linear program-
ming capability available today, there are many nonlinear programming problems arising in
industry which can be perfectly satisfactorily solved centrally (with a single level algorithm).
Thus it is not always true to say that decomposition is necessary for the solution of large non-
linear optimization problems arising in industry. Nor is it true to say that decomposition will
generally lead to reduced computation times; frequently the converse is true. Admittedly the
decomposition of a large mathematical programming problem can ease the difficulties of
limited computer storage, because the subsystem problems provide a natural modular frame-
work for overlaying what could otherwise be much too large a program and data set, and if the
subsystem optimizations can be solved in parallel on separate but linked computers then it is
more likely that savings in computer time can be made. However, these are almost incidental
benefits or natural consequences of a deeper motivation for adopting a decentralized approach.

It is important to remember that the optimization problems we are studying arise from an
attempt to manage and control a complex system — frequently a large complex system. Optimi-
zation is not an end in itself but a means to an end, and it must be subservient to the manage-
ment objectives. If the management tasks are organized on a hierarchical decentralized basis,
as they usually are, and if optimization is part of the management approach, then hierarchical
decentralized optimization arises naturally, and it is vital that we should understand the prop-
erties of a set of interlinked optimizers arising in this way. This last point constitutes the real
reason for the study of decentralized optimization: because hierarchical optimization is a
natural corollary of hierarchical management, which by observation is the type of structure
used to control most complex systems, it is essential to study the conditions under which
hierarchical optimization is effective. By ‘effective’ we mean able to obtain the correct answers
reliably, with reasonable computing effort and moderate data transmission requirements, and
yet able to provide all of the answers which management needs in an industrial environment.

At this point it is useful to consider briefly the influences which computers have had on the
management of large industrial systems, because these influences also affect our interest in
decentralized optimization. Initially the powerful data handling and computational power of
computers, combined with the growing development of O.R. techniques and management
science, led to the idea of totally integrated management based on a central computer. For a
large-scale complex system this is quite impossible. Indeed to quote from the Steel Industry
Project Staff of Purdue University (1975), “The early visualized concept of controlling the
whole steel mill from one central computer system proved impractical because of the previously
unconceived of complexity and magnitude of the task and the totally unappreciated difficulty of
programming very large systems into a single computer.” Thus it is necessary to break down
this vast computing task into a number of problems of manageable size and in doing this one
arrives at a computing structure closely related to the management structure which in turn is
related to the intrinsic structure of the industrial complex. Discussion of the task oriented
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structures that arise as a result of decomposition in large industrial complexes has been given by
a number of authors (Mesarovic, Macko & Takahara 1970; Lefkowitz 1966). Wilson (1977)
has described this breaking down process formally in terms of problem decomposition, whereas
Cheliustkin & Lefkowitz (1975) and Findeisen & Lefkowitz (1969) have preferred a more
heuristic approach and in their functional multilayer hierarchy they recognize four principal
levels: the regulation or direct control level, the supervisory or optimization level, the adaption
level and the self organizing level. It is now commonplace, particularly in the process industries
such as steel and petrochemicals, to find a hierarchy of computers associated with these func-
tional levels. Typically there will be on-line computers for direct control of the plants, and the
set points (desired regulation levels) for these computers will be provided by supervisory com-
puters: yet again above these there may be what can be termed a management information
computer primarily concerned with assisting the commercial decision making. Optimization
techniques may be used at all three levels of this computer hierarchy but such techniques are
most usually exploited at the supervisory level. In the case where several supervisory computers
are used, optimization can be truly decentralized and the optimization of each plant or group of
plants can be carried out in the computer associated with that plant or group.

These ideas are well illustrated by the approach to production planning and plant control
used by many petrochemical industries (Dyer 1976). As discussed above, the size of a modern
petrochemical complex makes it impractical to attempt a single level on-line optimization of the
entire business and instead a simplified production planning model is used off-line at regular
intervals to maximize profitability by setting the desired steady state operating conditions of
the various production units. At thesupervisory level, on-line computers which use more detailed
models may then optimize the instantaneous profit rate of each plant while maintaining the
desired average operating conditions. The off-line model is designed to give the gross profit
over a period of a month or more as a function of commercial and production planning decisions
taken for the entire complex. Such a model must necessarily be a simplified one but even so the
number of variables and constraints is so large that only a linear model can be considered and
the optimization at this level is achieved by linear programming. At the supervisory level more
detailed nonlinear models are required in order to represent accurately enough the response of
the plants to controllers and disturbances. The optimization at this level will usually be by
nonlinear programming. In this situation Dyer draws attention to the problem of ensuring that
the local on-line optimizers are consistent with the overall optimal strategy for the whole com-
plex computed by the off-line linear program. The output of the linear program contains both
the desired production levels and the marginal prices for the various products and feedstocks
which flow between the plants. It is by no means clear whether all this information can be used
consistently by the on-line optimizers, nor how it can be used — a problem which is confounded
by the differences of detail and time scale between the off-line and on-line models.

The theory of decentralized optimization is concerned with just these problems but it can
give only partial answers, and successful resolution of these problems in industry depends criti-
cally upon the skill of the O.R. team who build and maintain the models and run the optimizers,
and above all on the facilities provided for management supervision and intervention which are
an integral part of successful planning, scheduling and optimization schemes in industry.
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3. THEORY OF DECENTRALIZED OPTIMIZATION

The aim of this section is to review sufficient of the basic theory of decentralized optimization
to allow a discussion of the advantages and disadvantages of the technique and its associated
algorithmic problems, and to provide a basis for the consideration of practical usefulness of the
methods and possible extensions presented in §§4 and 5. The theory of decentralized optimiza-
tion has been treated in depth in a number of authoritative works, among which the books by
Lasdon (1970) and Findeisen (19744) are notable. The former concentrates on large-scale
linear and, to a lesser extent, nonlinear problems arising typically in an operations research
environment, and gives a detailed analysis of the decomposition algorithms of Dantzig &
Wolfe (1960), Benders (1962) and Rosen (1964). The latter is primarily concerned with sep-
arable optimization problems arising in multilevel control systems. The basic manipulations and
strategies used in decomposing optimization problems have been reviewed by Geoffrion (1970)
and more recently by Wilson (1977). The theory is not new therefore, neither can such a
brief review as that given below fully explain all the variations that are possible. What follows is
a discussion of the most basic methods of decomposing and coordinating nonlinear programming
problems: the treatment follows closely that given by Simmons (1975) and Findeisen (19745).

Z; subsystem # X;
xi=T(z,m;)

v

m;

Ficure 1. Subsystem i of an interconnected production system.

(@) A mathematical programming problem for a complex production system

To avoid difficulties of understanding arising from unnecessary mathematical abstraction,
and to emphasize the relevance of the theory to real problems, we derive the mathematical
programming problem, which forms the starting point for our treatment of the theory, by con-
sidering a disaggregated production system. Suppose an assembly of N subsystems (factories
or process units) is interconnected by product streams. As shown in figure 1 the ith subsystem
has a vector of inputs %; from the other subsystems, a vector of outputs #; to the other subsystems
and a vector of controls m,;. It is assumed that the algebraic equation describing the perform-
ance of the subsystem, i.e. the model of the subsystem, is

x; = Ty(z;, m;) (1)

and that the feasible operating region of the subsystem is defined by the vector of local con-

straints
h,(z;, %, m;) < 0. (2)
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The interconnections between the subsystems are simple in the sense that an output stream can
be characterized by a single variable and goes directly from one subsystem to another, although
stream merging and recycling are allowed; under these conditions we may write

G [”] o, (3)

X

where G is a matrix of ones and zeros, generally sparse and non-square, and where z and « are
the composite input and output vectors

[2f2] ... 25]" and [afaf ... &3]

There are several ways in which the matrix G can be partitioned; for the methods described
in this section it is convenient to proceed by suitably permuting the columns of G and ordering
the elements of 2 and & to group together the inputs and outputs of each subsystem so that
equation (3) may be written

[GyiGyi ... Gyl |5, | = 0

or g‘, G, [zi] = 0. (4)
=1

x5

For convenience of notation it is desirable to write this as

N
z‘§1 g:(z;, ;) = 0, (5)

where the g; are linear vector functions having a dimension equal to the number of rows of G,
i.e. equal to the total number of product streams. It is assumed that there is a scalar objective
function for each subsystem, f;(%;, &;, m;), and that the global objective function is just the
sum of the subsystem objectives

N
iz-‘-ll.fi(zi: x;, M), (6)

Thus the global mathematical programming problem which we denote by M and which we
assume to be well posed is

N
M max Y fi(2;, %, m;) (6)
Zyx,m t=1
N
subject to > 8%, %) =0 (3)
i=1
= T.(g. , 1
x’b l(zl’ m%)} i — 1, 2, ey N. ( )
h(z;, %, m;) <0 (2)

For later use let us define 2, &, 17 to be the solution of this problem and let
N o
_Zlfi(%«c: &, th;) = F.
=

What we seek now are ways in which M may be broken down into N independent optimiza-
tion problems which can be coordinated in some way to achieve the solution of the global
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problem. We describe below two basic methods: primal coordination and dual coordination. A
study of these two methods is an essential basis for understanding the various decomposition and
coordination procedures described in the literature, and provide a background for the discus-
sions which follow in §§4 and 5.
(b) Primal coordination

In this method the solution of M is sought by maximizing the global objective function
iteratively, first over the controls m, then over the inputs and outputs 2 and #, then again over
m and so on until convergence. This is essentially Geoffrion’s (1970) method of projection,
Mesarovic ef al.’s (1970) method of model coordination and what Kulikowski, Krus, Manczak
& Straszak (1975) and Wilson (1977) call parametric decomposition. To analyse the conditions
under which the method will work it is necessary to describe it more formally which we may do
as follows. If the interconnection variables 2 and & are fixed at some value which satisfies the
interconnection constraint (5), then the maximization of (6) is only over the controls m, and
the problem M separates into N independent maximization problems

P(i) max f;(%;, %;, m;)
m;
s.t. hy(z;, %, m;) < 0,} (7i
%, = Ty(%;, my). Y

Let the solution of these problems be denoted by #y. (more correctly by ﬁi(zi, ;) because these
solutions depend upon the parameters %; and &, but the inclusion of the arguments is notation-
ally clumsy and is therefore omitted). The value of the global objective function for these
values of m; (and the chosen values of z; and ;) will be

N *
iglf;:(zi’ x;, M;) = (%, &) say

and the aim is to maximize this function. Thus the successive values of 2 and & will be deter-
mined by solution of the coordinator or master problem

CP max (2, )
Z, X

N
s.t. X 8i(%;, %) = 0,

= (®)
and (2, %) €V,

where the set ¥ is introduced to ensure that it is possible to find solutions to the problems P(7)
The set V is defined as follows

V = {(z, #)| there exist m, satisfying equations (7i) for all ¢}. (9)

The problems P(¢) and CP are totally interdependent. In one iteration of the algorithm the
local problems P () take the values of z and & specified by CP and hand back the optimal value
of the local objective functions f;(2;, ;, ;) ; the coordinator uses these values to compute new
feasible values of z, # which will increase ¥, and sends these values to the sub-systems ready for
the next iteration. A diagram of this information flow for a three subsystem problem is shown in
figure 2.

It should be noted that because CP is constrained to work with feasible z and , i.e. values of
z and & satisfying (5), the successive values of 11, generated as the iterations progress, will
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maintain the stream interconnections in balance, although not at their optimal values until the
iterations have converged. This property, which is not possessed by the dual coordination
method described below, is useful in on-line situations. Also in contrast to the later methods,
primal coordination does not introduce any auxiliary variables to achieve decomposition and
thus the sum of the dimensions (number of variables) of the problems CP and P(7) is the same as
the dimension of M. However, this very point is intrinsically an important source of difficulty
with primal coordination — in working with the minimum number of variables the algorithm
may not give sufficient degrees of freedom to permit solution of the subsystem problems. It is
quite possible for a subsystem to have more inputs and outputs than controls and thus if the
inputs and outputs are arbitrarily fixed it is likely that there are no feasible values of m, which
can achieve satisfaction of the local constraints (7). This is part of the reason for introducing the
set ¥V into CP but the simple definition of V given in (9) belies the fact that it is very difficult to
compute this set at the coordinator level without centralizing all the local information (Fin-
deisen 19740), although some resolution of this difficulty is possible if all the functions T; and
h; are linear (Kulikowski ez al. 1975).

cp

max ¢ (z,x)

Z,x

s.t. eqns (8)

S (3, x3.m3)

filzpxnmy) Y \fz(Zz,xz,l;x 2)

22,%2 233
P PQ) PQ)
max f(zy,%,,m,) max f5(2s,%5,m,) max f3(23,%3,ms3)
my my ny
s.t. eqns (7.1) s.t. eqns (7.2) s.t. eqns (7.3)

Ficure 2. Information flow in primal coordination.

Another source of difficultyis that, in general, the gradient of the objective function (2, &) is
not easy to compute and may not even exist: this is an important limitation because one itera-
tion of the coordinator problem requires solution of N problems P(z). Thus it is desirable to
solve CP efficiently, and this is not really possible without gradient information. Even if assump-
tions are made that the functions f; are strictly concave, the functions h; are convex and differ-
entiable and the functions T; are linear, the function ¢ may still not be differentiable but it can
be shown that ¢ is concave. Therefore subdifferentials of ¢ exist and may be used as a basis for
effective optimization algorithms although details of such algorithms for solving CP have been
worked out only for rather special cases (Lasdon 1970).
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These difficulties with primal coordination, which stem in part from the inflexibility of
equality coupling constraints, constitute just the kind of difficulties which must be overcome in
industry when coordination of a complex production system is attempted by specifying the
product rates and feedstock consumptions of each factory or process unit. In practice these
difficulties are largely overcome by the provision of product storage thus allowing some
relaxation of the interconnection constraints and in §§4 and 5 consideration is given to how this
relaxation can be exploited in the context of decentralized optimization; but first an alternative
method of coordination is presented.

(¢) Dual coordination

Dual coordination is based on strong Lagrangian theory (Whittle 1971). The coupling
constraints (5) are adjoined to the objective function (6) using a vector of Lagrange multipliers
of a dimension equal to the number of elements of g;, i.e. equal to the number of interconnec-
tion streams. Thus a global Lagrangian function is defined as

N N
L(Z, x, m, }') = ‘=Elfi(z'i’ %15 mi) — 4t .:241 gi(zi: xi) (10)

and the maximum of this function is sought subject only to the local constraints (1) and (2);
this maximization problem we denote by L.
L max L(z, ¥, m, )
Zy X,
s.t. x,L = T,;(Zi, mz)

} foralli = 1, 2, ..., N.
hi(zi’ %5 mi) <0

Let the values of the inputs, outputs and controls which solve L for any given value of 4 be
denoted by %, & and 1. (Again these should more correctly be denoted by Z(2), ¥(4), m(A)
because they depend upon the given value of 4 but the functional notation is omitted for con-
venience.) If a value of 4, say A, can be found such that the interconnection constraints are
satisfied by the resulting values of £ and &, i.e. such that

21 gi(eéia zz) = 0, (11)

*

* * % ¥ 9
then z=2 &x=%m=m and L(% & m,A) =F,

*

x
that is to say the solution of L for 4 = i solves M. For any other value of 4 it may be shown that
L% & 2 > F, (12)
i.e. the maximum value of the Lagrangian for any given value of 4 provides an upper bound on
F and this upper bound will equal F if and only if there exist a (finite) 4 = 4, such that (11) is

satisfied (Whittle 1971). It follows from this that the required value of 4 may be sought by
e e e % % % .
minimizing L(Z, &, m, 4) over A. Thus we define

$(4) = L(z, %, m, ) (13)
and attempt to determine 4 by solution of the problem D.
D mlin B(4).

The function ¢(4) is called the dual function and D the dual problem (i.e. the dual of M).
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The pair of interacting problems L and D now replace M in the sense that the solution of M
is sought by iteratively solving L and D in succession. The point of this problem transformation
is that for a given value of 4 the Lagrangian separates; thus from (10)

N N
L(z, ®, m, ) = X fi(z;, %, m;) =T 3 g,(%;, %),
i=1 i=1

I

N
Enl {fi(=s, w;, my) — A% g(2;, %)},

Il
M=

7

1 li(zi’ xi; mi; }'),

where the scalar function /;(2;, ,, m;, 1) = f;(2;, &;, m;) — AT g,(2;, ;) may be regarded as a

local subsystem Lagrangian function. Thus we can replace L by N independent problems.

L(z) max (2, %;, m;, A)
iy Xis M

st x; = Ty(3;, my), }
hi(z;, %;, m;) < 0.

(71)

The information flow between D and L(¢) at each iteration is shown in figure 3.

D
min ¢ (4)
A
* & x A % A l:’.,i,l;l,z
I(z1,%1,m3) " Iz 5% 2,m21) A2nFamah)
2
L(1) LQ L(3)
max [y (z5,%3,m,1) max [,(22,% 2,M,,2) max b (23,%3,m3,4)
Ty ¥y 229% 2,2 23,%3,m3
s.t. eqns (7.1) s.t. eqns (7.2) s.t. eqns (7.3)

Ficure 3. Information flow in dual coordination.

In the context of interconnected production systems introduced in § 34, the dual decomposi-
tion presented above has a direct economic interpretation (Brosilow & Lasdon 1965). Note that

z . . . . oy
each element of the vector G [x] on the right and side of (3) is associated with just one product

stream. If we assign a price to each stream and ask that each subsystem which makes or uses this
stream shall sell it or buy it at this price, and if the profit or loss thereby incurred is added to or
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subtracted from the local objective (profit) function, we find that each local objective function
so modified becomes

Ji(zi, %, m;) - ATG; [:z] = fi(%:, %, m;) —A7g,(2;, %)),
K2

where 4 is the vector of stream prices. If we allow each subsystem to choose its own values for its
inputs, outputs and controls to maximize this modified profit function subject only to its local
constraints, we find we have formulated the Lagrangian subproblems L(z). In this interpreta-
tion the réle of the coordinator D is to adjust the prices 4 so that each subsystem finds it profit-
able to produce and consume just the right amount of the product streams to maintain the
interconnections in balance. In the light of this interpretation dual coordination is often called
‘price coordination’, and because the subsystem goals f;(2;, #;, m,) are modified by the terms
A" g,(z;, #;) through which the coordinator exerts its influence, the description ‘goal coordina-
tion” is also used.

Analytically, dual coordination appears rather more attractive than primal coordination; in
particular, only mild assumptions of continuity of f;, g;, h; are needed to ensure that the dual
function ¢(4) is convex, and if the solutions of L(7) are unique the gradient of ¢(4) exists and is

N
given by — 3 g:(Z;, %,). Consequently reasonably fast optimization algorithms can be used to
i=1

solve D — indeed it is possible to generate second derivative information at the local level for use
in solving D by second order optimization algorithms (Foord 1974). Because the solution of
problem D can be so tractable, dual coordination has received considerable attention in the
literature which has not always reflected the limitations of the method. The obvious failing is
that it is an infeasible method in the sense that the solutions %, &, m derived from any other
value of 4 than 4 do not satisfy the interconnection constraints (5), but this is a limitation only in
some on-line situations. More importantly the presentation up to this point has not considered
whether i exists. If it does then solution of the dual problem D will find it because ¢(4) is
convex, but in many problems it is observed that for the optimal solution 4 of D, the corres-
ponding solutions of the subproblems L(i) are not unique and none of the values of z, &, m
satisfy the constraints (5). In this situation the dual function is not differentiable, 4 cannot be
identified with 1 and the optimal value of the dual function L(3, &; m, i) does not equal F.
Sufficient conditions on the problem M to ensure that this kind of failure does not occur in dual
coordination, are that the functions f; are strictly concave, h; are convex and T, are linear.
These conditions are restrictive for practical problems; they are however sufficient conditions
only, and it is quite possible that problems not satisfying these conditions can be solved by using
dual coordination. For example Javdan (1976) has shown that certain problems with quadratic
objectives and quadratic equality constraints can be solved satisfactorily by using dual coordi-
nation, but it must be emphasized that in the absence of special circumstances the application
of dual coordination to problems which do not satisfy the sufficient conditions given above
cannot be robust and failure is highly probable (Foord 1974; Simmons 1973). '

47 Vol. 287. A.
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4., THE RELEVANCE TO INDUSTRY OF THE BASIC METHODS OF DECENTRALIZED
OPTIMIZATION

The broad conclusions to be drawn from the discussion given in §3 are that in a real industrial
environment, coordination by specifying production targets or product transfer prices may be
difficult to implement or may not lead to the optimal policy: the aforementioned assumptions
of convexity and linearity which we required to make progress with solving the mathematical
programming problem A introduced in §3a seem restrictive and therefore the theory would
appear to offer little help in guiding the solution of real problems. While we believe these
conclusions are largely valid in the context given, we also believe that they are too sweeping,
and based on too narrow a concept of the problem, to warrant total rejection of the decen-
tralized or hierarchical approach. Notwithstanding the difficulties of the theory given in §3, the
observations made in §2 still stand - it is observed that industrial systems are indeed hierarchi-
cal and that decentralized optimization is made to work well enough though possibly not
truly optimally. This last point is crucial; the theory of decentralized optimization as discussed
in much of the literatiure and as presented in §3 is concerned with the optimal solution of a
precisely defined problem, whereas in industry we require an adequate solution to a rather
poorly or approximately defined problem. If this pragmatic view of industrial problems is
accepted then we can allow ourselves greater flexibility both in formulating the mathematical
programming problem and in devising viable decentralized solution techniques. We discuss
first the central significance of problem formulation and, in particular, of the kind of models
which may be used to represent the salient features of a system.

Faced with the very great difficulty of modelling a large complex system, but given that we
are not expected to produce exact or optimal results, we should not build ever more complex
models involving large numbers of parameters, perhaps with stochastic characteristics, which
we have little chance of quantifying. Rather the procedure should be to build the simplest
model that will suffice and that will suit the needs of any mathematical techniques we have to
use on it. Since we only require an approximation to the optimal solution of our problem we are
at liberty to make reasonable amendments to our problem formulation to suit our needs and
overcome some of the difficulties in our solution techniques. For example, Drew (1975) in his
approach to job shop scheduling by decentralized optimization has illustrated how the intro-
duction of reasonable approximation led to great problem simplification without incurring
serious loss of optimality. This process of ‘problem evolution’ has been discussed and illus-
trated by Wilson (1977).

In pursuing this approach to modelling it is natural to consider first linear or piecewise
linear models. For example, it was mentioned in §2 that the long-term planning models for the
petrochemical industry were linear, and linear models are widely and successfully used else-
where in industry. If f;, T; and h; are linear then M can be solved very adequately by linear
programming, and if a decentralized approach is required the method of Dantzig & Wolfe
(1960) and related methods (Lasdon 1970) are available. At the next stage of the problem
evolution quadratic objective functions f; may be introduced; the conditions for successful
application of both primal and dual coordination are now satisfied, but it should be noted that,
with f; quadratic and h; and T; linear, M is a classical quadratic programming problem for
which effective centralized solution techniques exist exploiting sparse matrix methods (Gill &
Murray 1974). The motivation for decomposing such a problem will arise more from the
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demands of a hierarchical management structure as discussed in §2 than from any computa-
tional considerations. Linear and quadratic programming algorithms comprise by far the
majority of mathematical programming techniques exploited in industry. Nonlinear pro-
gramming problems are infrequent, but nevertheless there do arise from time to time large
scale nonlinear problems which cannot be satisfactorily represented by linear approximations
(for example problems containing quotients or products of important variables having a wide
variation of magnitude) or wherein quadratic or even strictly convex objective functions are not
permissible. In general these problems can be tackled only clumsily by linear or quadratic
programming and yet it is just these problems which cause so much difficulty with the coordina-
tion methods of §3. However, provided one can move away from the rigid formulation of M
given in equations (1), (2), (5) and (6), viable decomposition algorithms can be derived and
two such algorithms are outlined in §5. They are both based upon the idea of relaxing in some
way the equality coupling constraints (5), the justification for this relaxation coming from the
considerations of realistic approximation and problem evolution discussed above. The first
method, related to primal coordination, and of wide applicability, assumes that the inter-
connection constraints need not be satisfied exactly, but simply ‘closely’; whereas the second
method, based directly on dual coordination, explicitly recognizes the time element and the
existence of storage and assumes that the interconnection constraints need only be satisfied on
average. We use the adjective ‘slack’ to describe constraints which may be satisfied in either of
these ways.

5. COORDINATION OF SYSTEMS WITH SLACK INTERCONNECTIONS
(a) A penalty function method of coordination

Findeisen (19745) aptly describes the penalty function method as a means of avoiding many
of the difficulties of primal coordination by introducing the interconnection constraints ‘softly’:
this soft introduction of the interconnection constraints is achieved by adjoining to the global
objective function a term which penalizes dissatisfaction of these constraints. Exact satisfaction
of these constraints is then no longer demanded, but close satisfaction can be enforced by making
the penalty term large enough. In this way the problem associated with inadequate degrees of
freedom of the local problems P(¢), and with the determination of the feasible set V, are largely
ameliorated. Coordination by penalty function methods has been studied in detail by Tatjewski
(1974), and has been considered for the optimization of dynamic systems by Pearson (1971) who
calls the method pseudo-model coordination. There is some flexibility in the way in which the
penalty term is constructed, and this allows some variation in formulating the coordination
procedure: unfortunately the literature does not always distinguish between these variations
and this has led to some confusion about the properties of the method. The following treatment
is due to Simmons (1976).

Again for clarity of illustration, attention is concentrated on the production system intro-
duced in §34, but the representation of the interconnection constraints by equation (5) is
inconvenient, and a different partitioning of the basic constraint equation (3) is used here.
Because each input is uniquely associated with an interconnection stream, each element of 2z
occurs only once in the equations (3), each element in a separate equation; therefore these
equations can be solved for z to give

2 = Cu, (14)
47-2


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

A

y \

Y,

Py
a \

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

418 G.W.T.WHITE AND M. D.SIMMONS

where C is a matrix of ones and zeros. By suitably partitioning C into N groups of columns and
N groups of rows equation (14) can be written

Zy Cnu Cp...C ¥
Zy| = |Cn Q22 Con | | %2
ZN CNI CN2 ees CNN Xy
. . N
which can be rewritten Z, = 3 Cy %, (15)
j=1

where the C;; are the submatrices of C conformable with z; and ;.
By using this form of the interconnection constraint equation, the global problem becomes
MI
M' max 2 fz(z s %5 MM)
z,x,m =1

s.t. z,,: = E C
j=1

1=1,2, ... N.
%, = Ty(z;, m,) 7

hi(z;, %, m;) <0

As before we seek a way of decomposing this problem into N or more interacting but simpler
subproblems. The first step is to introduce auxiliary variables # which are required at this stage
to be exactly equal to the outputs #. Problem A’ can now be transformed quite trivially into the
exactly equivalent problem M”

M" max Zﬁ(z x;, m,)

Z, X, mu it=

S.t. Zi = E C
j=1

x; = T;(2;, my) i=1,2,...N.
h,(z;, %, m;) <0

X, = U,

In the context of the production subsystem shown in figure 1 this reformulation implies that
each output stream «; is cut, and the stream value beyond the cut is denoted by u, as shown in
figure 4.

This conceptual cut is of no significance as long as the constraint ; = u, is satisfied ; however,
in the next stage of problem evolution this constraint is dropped but its close satisfaction is
ensured by adding to the objective a penalty function which is quadratic in the constraint
dissatisfaction. Thus consider the problem M (K) which is derived by using an exterior penalty
function technique to deal with the constraint ¥ = w.

M(K) max Zﬁ(z %;, M) — (x— u) T Ky(% - 1y),

Zx,mu i=1

s.t. z; = E C,w u‘,'
i=1

%, = Ty(z;, m,)

hi(z;, %, m;) <0
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where the K are diagonal matrices of positive constants. The solution of the problem M (K) will
not be the same as that of M” (and M’) but it can be made close by making the matrices K;
large, and as K; - oo the solutions of the two problems and the optimal objective function
values become identical (Fiacco & McCormick 1968). For very large values of K; the problem
M(K) is ill conditioned and its numerical solution is likely to be slow from arbitrary starting
points. Thus the usual treatment of constraints by this exterior penalty function method is to
solve a sequence of problems A (K) with monotonically increasing values of K;, starting each
problem from the solution point of the previous problem in the sequence. However, if the
arguments given in §4 are valid and some degree of relaxation of the interconnection con-
straints is permitted, it will not be necessary to pursue a sequence of solutions as K; — co; the
solution of the problem M (K) for a fixed moderate value of the K; will be acceptable.

subsystem i
zi vz N u; N
7 7
xy=T(z;,m;)
m;

FIGURE 4. Subsystem with cut output stream.

The required solution of M(K) can be found in a decentralized fashion by the parametric
decomposition or primal coordination methods of §34. For a fixed value of # the problem
M (K) separates into the N subproblems Q(z)

Q(1) max fi(z;, ¥, m;)— (%, —u,)"K;(%;,—u,)

Ziy Xiy M
N

s.t. Zi = Z Cw- u]
i=1

x; = T;(2;, m,) (163)
h,(z;, %, m;) <0

Let the solution of these N subproblems be denoted by 3;, &;, m;, all of which will be functions
of the fixed value of u. The value of the global objective function of M (K) for these values of
inputs, outputs and controls is defined as §(u) where

N
O(u) = ,;1 {,f;’(gzéis ;i’ 'r%) - (xi““i)TKi(;i—ui)}-
The optimal value of u is then determined by solution of the problem
U max 6(u)

st.ueW,
where the set W is defined

W = {u]|there exist 2, ¥, and m satisfying (161) for all 7}.
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Note that this set I contains the set X of all feasible values of & as a subset, and without serious
loss of freedom W may be replaced by X: in contrast to the set V introduced for primal co-
ordination in §35, the set X is easily determined. Equally in comparing problems Q (i) with
problems P (i) we note that the introduction of the auxiliary coordinating variables ¢ has given
more degrees of freedom to the problems @ (i) in that both m; and x; may be freely chosen in
Q(z) since only z; is uniquely fixed by the coordinator through equation (15).

Given that the functions f; and T; are differentiable and the functions h, are continuous and
functions of m; only and given that the solutions to problems @ (i) are unique it can be shown
that the derivatives of §(u) exist, and therefore gradient methods of optimization may be used
to solve U. Indeed, except at points where the active set of the constraints h; are changing, the
second derivatives of f(u) exist and may be used in second order methods of solving U. These
considerations show that the penalty function method of coordination is of wider applicability
than the basic primal coordination method and can be computationally much more efficient,
although numerical experiments show that the method is still no quicker than a centralized
solution of the global problem and therefore the decision to adopt the penalty function method
can still only be motivated by the original hierarchical environment of the problem.

(b) The randomized solution method

It was stated in §3¢ that in the absence of certain rather restrictive convexity and linearity
assumptions, dual coordination could fail. However, the concept of ‘randomized solutions’,
originally due to Whittle (1971), shows that dual coordination need not be abandoned when
failure occurs provided that it is necessary only to satisfy the equality constraints (5) on average.
In the context of the production system of §34, Simmons (1975) has suggested that the aver-
aging can be achieved by the provision of storage for every stream; the need for instantaneous
satisfaction of the constraints is thus relaxed but if the constraints are satisfied on average it is
possible to ensure that the storage will be neither saturated nor depleted over a period of time.

The theory of the method is based quite simply on the observation made in §3¢ that dual
coordination only fails when for 2 = 4, where 1 solves D, the solution of the problems L(i), and
therefore the solution of the problem L, is not unique. Let the multiple solutions to L be denoted
by_g", %k mk and let
gi(§i‘c> éf) = b, (17)

Leg=

1

where k = 1, 2, 3, ...

Each vector b* may be interpreted as the constraint dissatisfaction vector corresponding to
each solution of L. Whittle and Simmons show thatitis always possible to find a convex combina-
tion of some or all of these vectors b* which equals the null vector, that is to say it is possible to
find numbers s; such that

r
s bl =0, (18)
i=1
,
.“lsj=1, 5520 (j=1,2,...,7), (19)
j=

where 2 < r < ¢+ 1 and where ¢ is the number of interconnection streams, i.e. the dimension
of the vectors b’. The immediate interpretation of these results is that if the subsystems are
operated in a random or cyclic sequence of 7 states in such a way that they spend a time propor-
tional to s, in the state determined by ZL ¥ !, a time proportional to s, in the state deter-
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mined by %%, %2, m? and so on over the 7 states, then equations (18) and (19) imply that the
constraint dissatisfaction arising in these r states averages to zero. Moreover, the theory shows
that the average of the objective function values achieved in each of the r states is equal to the
dual function, namely

r N 3 .
5 5| A 5, ) = 60 (20)
i=1 " li=1
and hence it follows from the inequality (12) that
r N
5 (3 A ¥ ) > P (21)
i=t L=

Thus the average value of the objective function cannot be less than, and will usually exceed,
the maximum value F which can be achieved when the constraints (5) are instantaneously
satisfied all the time.

Before this useful extension of dual coordination can be exploited it is necessary to find a
satisfactory numerical method of solving the dual problem D, because as stated in §3¢, when
there are multiple solutions to the problem L, the dual function is not differentiable. However,
as ¢(4) is convex under the mild assumptions of continuity of the functions f;, h; and g;, and as
the vectors b7 introduced above are subdifferentials of ¢ and are easily computed, the convex
programming method being developed by Lemarechal (1975) and Wolfe (1975) may be useful —
indeed the method of these authors might also offer some hope of solving efficiently the problems
CP and U under more general assumptions that have been possible hitherto, but the method is
not yet fully tested. Simmons has preferred to solve D by Kelley’s cutting plane method (Kelley
1960; Marsten 1975) which approximates the dual function by an increasing set of supporting
hyperplanes. At each step of the algorithm the lowest vertex of the polyhedron bounded by the
planes is found by linear programming, and a new plane supporting the dual function at this
solution point is added. As the algorithm progresses the sequence of solution points found by
linear programming at each step converges uniformly on the solution $(i). The method has only
linear convergence and is slow, but by solving the dual of the linear program at each step, values
of 5; and 7 satisfying (18) and (19) are obtained directly, even though the b7 correspond to a
value of 4 which is not the optimal value 1. Thus at least as the algorithm progresses it gives an
operating strategy which converges steadily to the optimal, and which ensures that the inter-
connection constraint violations average to zero at every step of the algorithm; thus on-line
use of the method is acceptable.

6. CONGLUSIONS

The methods of §5a and 4 overcome some of the objections to the basic methods of primal
and dual coordination given in §34 and ¢, and yet they retain the fundamental features of the
basic methods in that the penalty function method coordinates by specifying output targets
(the u,) and the randomized solution method coordinates by specifying prices. What remains to
be assessed is whether the assumptions of constraint slackness used in these methods are valid in
practice. Assessment of the numerical robustness and indeed of the whole feasibility and value
of these methods can only be made by applying them to real industrial problems. Unfortu-
nately, opportunities for such practical studies are rare and there are many reasons for this. It
must be accepted that the remarks made in §4 are true — there are few occasions in industry
when large-scale nonlinear programming problems need to be solved, but on the occasions when


http://rsta.royalsocietypublishing.org/

O\
B

1=

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

s \

y - N

Py

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

SOCIETY

.

AL

OF

A

Y e

OF

Downloaded from rsta.royalsocietypublishing.org

422 G.W.T. WHITE AND M.D. SIMMONS

such problems do arise, human inertia and resistance to change make it unlikely that these
methods will be tried, or even considered. It is noteworthy that even the well established method
of Dantzig & Wolfe (1960) for decomposing linear programs is little used, even though suitable
large scale linear programs occur widely in industry. In reviewing just this situation, Orchard-
Hays (1973) puts forward as one of the main reasons for the lack of exploitation of decomposi-
tion, the power and effectiveness of present day, single level, linear programming packages,
and the speed and size of the computers available to run these packages: by using these facilities,
industry can solve its mathematical programming problems more or less adequately even though
on occasions, somewhat inefficiently and inaccurately.

To be fair, it must be emphazised that the promising decentralized optimization techniques,
which have formed the main topic of this paper, tackle only one aspect of exploiting structure in
industrial problems. The important and largely unsolved problems of decentralized informa-
tion structures has already been mentioned in §1. Equally important is the problem of deter-
mining structure — a problem which was glossed over in §34 where it was assumed that the
delineation of a subsystem and identification of its inputs and outputs was trivially obvious: in
practical problems, particularly where the interconnections are not readily recognizable
streams, such as in socio-economic systems, the analysis of structure to reveal not only the ‘nat-
ural’ subsystems and their interconnections but also the strength or significance of these inter-
connections is an essential step and techniques for carrying out this analysis are being developed
(Kevorkian & Snoek 1973; Gourlay, McLean & Shepherd 1977). By such analysis techniques
it may be possible to devise decentralized optimization techniques which coordinate with
respect to the ‘significant interconnections’ only and this is an interesting line of further re-
search (Findeisen 1975).

Thus in the subject area of complex systems there is already a considerable body of theory
and there is a substantial program of continuing research. At this stage it is essential to obtain
from industry some definite feedback on the value and effectiveness of the ideas and techniques
being developed, otherwise the whole subject area will become yet another branch of pure
mathematics.
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